Package: xgboost 3.0.0.1

Jiaming Yuan

xgboost: Extreme Gradient Boosting

Extreme Gradient Boosting, which is an efficient implementation of the gradient boosting framework from Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>. This package is its R interface. The package includes efficient linear model solver and tree learning algorithms. The package can automatically do parallel computation on a single machine which could be more than 10 times faster than existing gradient boosting packages. It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that users are also allowed to define their own objectives easily.

Authors:Tianqi Chen [aut], Tong He [aut], Michael Benesty [aut], Vadim Khotilovich [aut], Yuan Tang [aut], Hyunsu Cho [aut], Kailong Chen [aut], Rory Mitchell [aut], Ignacio Cano [aut], Tianyi Zhou [aut], Mu Li [aut], Junyuan Xie [aut], Min Lin [aut], Yifeng Geng [aut], Yutian Li [aut], Jiaming Yuan [aut, cre], David Cortes [aut], XGBoost contributors [cph]

xgboost_3.0.0.1.tar.gz
xgboost_3.0.0.1.zip(r-4.5)xgboost_3.0.0.1.zip(r-4.4)xgboost_3.0.0.1.zip(r-4.3)
xgboost_3.0.0.1.tgz(r-4.5-x86_64)xgboost_3.0.0.1.tgz(r-4.5-arm64)xgboost_3.0.0.1.tgz(r-4.4-x86_64)xgboost_3.0.0.1.tgz(r-4.4-arm64)xgboost_3.0.0.1.tgz(r-4.3-x86_64)xgboost_3.0.0.1.tgz(r-4.3-arm64)
xgboost_3.0.0.1.tar.gz(r-4.5-noble)xgboost_3.0.0.1.tar.gz(r-4.4-noble)
xgboost_3.0.0.1.tgz(r-4.4-emscripten)xgboost_3.0.0.1.tgz(r-4.3-emscripten)
xgboost.pdf |xgboost.html
xgboost/json (API)

# Install 'xgboost' in R:
install.packages('xgboost', repos = c('https://dmlc.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/dmlc/xgboost/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:

On CRAN:

Conda:

distributed-systemsgbdtgbmgbrtmachine-learningxgboostcppopenmp

17.45 score 27k stars 115 packages 59k downloads 207 mentions 57 exports 4 dependencies

Last updated 3 hours agofrom:c12b04964d (on release_3.0.0). Checks:1 OK, 8 NOTE, 3 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 27 2025
R-4.5-win-x86_64WARNINGMar 27 2025
R-4.5-mac-x86_64NOTEMar 27 2025
R-4.5-mac-aarch64NOTEMar 27 2025
R-4.5-linux-x86_64NOTEMar 27 2025
R-4.4-win-x86_64WARNINGMar 27 2025
R-4.4-mac-x86_64NOTEMar 27 2025
R-4.4-mac-aarch64NOTEMar 27 2025
R-4.4-linux-x86_64NOTEMar 27 2025
R-4.3-win-x86_64WARNINGMar 27 2025
R-4.3-mac-x86_64NOTEMar 27 2025
R-4.3-mac-aarch64NOTEMar 27 2025

Exports:getinfosetinfoxgb.attrxgb.attr<-xgb.attributesxgb.attributes<-xgb.Callbackxgb.cb.cv.predictxgb.cb.early.stopxgb.cb.evaluation.logxgb.cb.gblinear.historyxgb.cb.print.evaluationxgb.cb.reset.parametersxgb.cb.save.modelxgb.configxgb.config<-xgb.copy.Boosterxgb.create.featuresxgb.cvxgb.DataBatchxgb.DataIterxgb.DMatrixxgb.DMatrix.hasinfoxgb.DMatrix.savexgb.dumpxgb.ExtMemDMatrixxgb.gblinear.historyxgb.get.configxgb.get.DMatrix.dataxgb.get.DMatrix.num.non.missingxgb.get.DMatrix.qcutxgb.get.num.boosted.roundsxgb.ggplot.deepnessxgb.ggplot.importancexgb.ggplot.shap.summaryxgb.importancexgb.is.same.Boosterxgb.loadxgb.load.rawxgb.model.dt.treexgb.model.parameters<-xgb.paramsxgb.plot.deepnessxgb.plot.importancexgb.plot.multi.treesxgb.plot.shapxgb.plot.shap.summaryxgb.plot.treexgb.QuantileDMatrixxgb.QuantileDMatrix.from_iteratorxgb.savexgb.save.rawxgb.set.configxgb.slice.Boosterxgb.slice.DMatrixxgb.trainxgboost

Dependencies:data.tablejsonlitelatticeMatrix

XGBoost for R introduction

Rendered fromxgboost_introduction.Rmdusingknitr::rmarkdownon Mar 27 2025.

Last update: 2025-02-19
Started: 2025-01-15

XGBoost from JSON

Rendered fromxgboostfromJSON.Rmdusingknitr::rmarkdownon Mar 27 2025.

Last update: 2025-02-19
Started: 2019-05-15

Readme and manuals

Help Manual

Help pageTopics
Model Serialization and Compatibilitya-compatibility-note-for-saveRDS-save
Test part from Mushroom Data Setagaricus.test
Training part from Mushroom Data Setagaricus.train
Extract coefficients from linear boostercoef.xgb.Booster
Dimensions of xgb.DMatrixdim.xgb.DMatrix
Handling of column names of 'xgb.DMatrix'dimnames.xgb.DMatrix dimnames<-.xgb.DMatrix
Get or set information of xgb.DMatrix and xgb.Booster objectsgetinfo getinfo.xgb.Booster getinfo.xgb.DMatrix setinfo setinfo.xgb.Booster setinfo.xgb.DMatrix
Predict method for XGBoost modelpredict.xgb.Booster
Compute predictions from XGBoost model on new datapredict.xgboost
Print xgb.Boosterprint.xgb.Booster
Print xgb.cv resultprint.xgb.cv.synchronous
Print xgb.DMatrixprint.xgb.DMatrix
Print info from XGBoost modelprint.xgboost
Get Features Names from Boostervariable.names.xgb.Booster
Accessors for serializable attributes of a modelxgb.attr xgb.attr<- xgb.attributes xgb.attributes<-
XGBoost Callback Constructorxgb.Callback
Callback for returning cross-validation based predictionsxgb.cb.cv.predict
Callback to activate early stoppingxgb.cb.early.stop
Callback for logging the evaluation historyxgb.cb.evaluation.log
Callback for collecting coefficients history of a gblinear boosterxgb.cb.gblinear.history
Callback for printing the result of evaluationxgb.cb.print.evaluation
Callback for resetting booster parameters at each iterationxgb.cb.reset.parameters
Callback for saving a model filexgb.cb.save.model
Accessors for model parameters as JSON stringxgb.config xgb.config<-
Deep-copies a Booster Objectxgb.copy.Booster
Create new features from a previously learned modelxgb.create.features
Cross Validationxgb.cv
Structure for Data Batchesxgb.DataBatch
XGBoost Data Iteratorxgb.DataIter
Construct xgb.DMatrix objectxgb.DMatrix xgb.QuantileDMatrix
Check whether DMatrix object has a fieldxgb.DMatrix.hasinfo
Save xgb.DMatrix object to binary filexgb.DMatrix.save
Dump an XGBoost model in text format.xgb.dump
DMatrix from External Dataxgb.ExtMemDMatrix
Extract gblinear coefficients historyxgb.gblinear.history
Get DMatrix Dataxgb.get.DMatrix.data
Get Number of Non-Missing Entries in DMatrixxgb.get.DMatrix.num.non.missing
Get Quantile Cuts from DMatrixxgb.get.DMatrix.qcut
Get number of boosting in a fitted boosterlength.xgb.Booster xgb.get.num.boosted.rounds
Plot model tree depthxgb.ggplot.deepness xgb.plot.deepness
Plot feature importancexgb.ggplot.importance xgb.plot.importance
SHAP summary plotxgb.ggplot.shap.summary xgb.plot.shap.summary
Feature importancexgb.importance
Check if two boosters share the same C objectxgb.is.same.Booster
Load XGBoost model from binary filexgb.load
Load serialised XGBoost model from R's raw vectorxgb.load.raw
Parse model text dumpxgb.model.dt.tree
Accessors for model parametersxgb.model.parameters<-
XGBoost Parametersxgb.params
Project all trees on one treexgb.plot.multi.trees
SHAP dependence plotsxgb.plot.shap
Plot boosted treesxgb.plot.tree
QuantileDMatrix from External Dataxgb.QuantileDMatrix.from_iterator
Save XGBoost model to binary filexgb.save
Save XGBoost model to R's raw vectorxgb.save.raw
Set and get global configurationxgb.get.config xgb.set.config xgb.set.config, xgb.get.config
Slice Booster by Roundsxgb.slice.Booster [.xgb.Booster
Slice DMatrixxgb.slice.DMatrix [.xgb.DMatrix
Fit XGBoost Modelxgb.train
Fit XGBoost Modelxgboost
XGBoost Optionsxgboost-options